我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|本期目录/Table of Contents|

普甜玉米种子萌发期糖代谢和水解酶活性动态变化(PDF)

《广西植物》[ISSN:1000-3142/CN:45-1134/Q]

期数:
2015年03期
页码:
348-353
栏目:
植物生理学
出版日期:
2015-05-20

文章信息/Info

Title:
Dynamic analysis for glucose mobilization and hydrolytic enzyme activity at different germination stages in sweet corn
文章编号:
1000-3142(2015)03-0348-06
作者:
程昕昕 刘言龙 牛永胜 刘 正
安徽科技学院 农学院, 安徽 凤阳 233100
Author(s):
CHENG Xin-Xin LIU Yan-Long NIU Yong-Sheng LIU Zheng
College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
关键词:
甜玉米 糖代谢 动态分析 种子萌发 种子物质利用率
Keywords:
sweet corn glucose mobilization dynamic analysis seed germination seed reserve utilization efficiency
分类号:
S330
DOI:
10.11931/guihaia.gxzw201406038
文献标识码:
A
摘要:
种子萌发是一个较复杂的生理生化过程,是种子贮藏物质在酶的作用下经过一系列反应生成蔗糖、葡萄糖、果糖等各种糖类化合物,为种子萌发提供碳源和能量。该研究利用两个不同来源、籽粒营养成分具有差异的普甜玉米种子动态分析了种子萌发期蔗糖、果糖和葡萄糖代谢及关键水解酶活性的变化。结果表明:在种子萌发过程中,E22和T26两个普甜玉米种子的物质动员量、物质利用率、蔗糖、葡萄糖和果糖含量均存在遗传差异,其中淀粉含量较高的T26种子具有较突出的物质利用率,表明淀粉是影响普通甜玉米种子萌发的关键因子; 在种子萌发4~8 d、6~10 d时,E22分别具有较高的蔗糖和葡萄糖含量,而T26是在萌发10 d时具有较高的果糖含量。随着种子发芽进程,蔗糖合成酶活性、淀粉酶活性都呈逐渐上升的趋势,但淀粉酶活性变幅较明显; 进一步关联分析8个种子萌发物质利用性状间关系,结果表明种子萌发期间,种子物质动员量主要受淀粉酶活性影响,而种子物质利用率则主要受糖含量多少制约。因此,提高甜玉米种子萌发期物质利用率对其种子发芽和幼苗生长,增强其与杂草生长的竞争力,提高甜玉米产量均具有重要意义。
Abstract:
Seed germination is a complex physiological and biochemical process that the storage material is broken into sucrose,glucose and other sugars compounds under the action of enzyme reaction in order to provide the carbon source and energy for seedling growth. In this study,the dynamics of storage carbohydrate mobilization,sucrose synthase activity and amylase were analyzed at different seed germination stages by using two different seeds that the grain nutrients are different are from different countries in sweet corn. The results showed that there were significant differences for storage carbohydrate mobilization between E22 and T26 including the mobilized seed reserve,seed reserve utilization,sucrose,glucose and fructose content. Starch is the key factor of seed germination in sweet corn because of the outstanding material utilization in T26. By comparison,the mobilized seed reserve in T26 was lower,while the seed reserve utilization efficiency was higher. During seed germination,sucrose and glucose contents were higher for E22 in 4-8 d and 6-10 d,while fructose content was higher for T26 in 10 d. Amylases and sucrose synthase activities were increased durining the process of seed germination. Grey correlation analysis showed that the mobilized seed reserve was affected by the amylases during seed germination and seed reserve utilization was constrained by sucrose content,glucose content and fructose content. Improving of seed reserve utilization in sweet corn is of great significance to strengthen the seed germination and seedling growth,to enhance its competitiveness with weeds and to increase production.

参考文献/References

Aoki N,Scofield GN,Wang XD,et al. Furbank RT. 2006. Pathway of sugar transport in germinating wheat seeds[J]. Plant Physiol,141: 1 255-1 263
Bewley JD. 1997. Seed germination and dormancy[J]. Plant Cell,9: 1 055-1 066
Cheng X,Cheng J,Huang X. et al. 2013. Dynamic quantitative trait loci analysis of seed reserve utilization during three germination stages in rice[J]. PLoS One,8: 80 002
Gordon AJ,Minchin FR,James CL. et al. 1999. Sucrose synthase in legume nodules is essential for nitrogen fixation[J]. Plant Physiol,120(3): 867-878
He DL,Han C. 2011. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach[J]. Proteomics,11:2 693-2 713
Hirose T,Scofield GN,Terao T. 2008. An expression analysis profile for the entire sucrose synthase gene family in rice[J]. Plant Sci,174(5): 534-543
Horst I,Welham T,Kelly S,et al. 2007. TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase[J]. Plant Physiol,144(2): 806-820
Kaneko M,Itoh H,Ueguchi-Tanaka M,et al. 2002. The α-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium[J]. Plant Physiol,128(4): 1 264-1 270
Karrer EE,Litts JC,Rodriguez RL. 1991. Differential expression of α-amylase genes in germinating rice and barley seeds[J]. Plant Mol Biol,16(5): 797-805
Lawrence DM,Halmer P,Bowles DJ. 1990. Mobilisation of storage reserves during germination and early seedling growth of sugar beet[J]. Physiol Plant,78(3): 421-429
Lovegrove A,Hooley R. 2000. Gibberellin and abscisic acid signaling in aleurone[J]. Trends Plant Sci,5: 102-110
McCouch SR. 2008. CGSNL(Committee on Gene Symbolization,Nomenclature,Linkage,Rice Genetics Cooperative). Gene nomenclature system for rice[J]. Rice,1: 72-84
Mohammadi H,Soltani A. 2011. Effects of seed aging on subsequent seed reserve utilization and seedling growth in soybean[J]. Int J Plant Prod,5(1): 65-70
Nandi S,Das G,Sen-mandi S. 1995. b-amylase activity as an index for germination potential in rice[J]. Ann Bot,75: 463-467
Penfield S,Rylott EL,Gilday AD. et al. 2004. Reserve mobilization in the arabidopsis endosperm fuels hypocotyl elongation in the dark,is independent of abscisic acid,and requires phosphoenolpyruvate carboxykinase 1[J]. Plant Cell,16: 2 705-2 718
Potokina E,Sreenivasulu N,Altschmied L,et al. 2002. Differential gene expression during seed germination in barley(Hordeum vulgare L.)[J]. Funct Integr Gen,2(1-2): 28-39
Pritchard SL,Charlton WL,Baker A,et al. 2002. Germination and storage reserve mobilization are regulated independently in Arabidopsis[J]. Plant J,31: 639-647
Soltani A,Gholipoor M. 2006. Seed reserve utilization and seedling growth of wheat as affected by drought and salinity[J]. Envir Exp Bot,55: 195-200
Svetlana L,Asa G. 2010. Mobilization of lipid reserves during germination of oat(Avena sativa L.),a cereal rich in endosperm oil[J]. J Exp Bot,61(11): 3 089-3 099
Zhang ZH,Yu SB,Yu T,et al. 2005. Mapping quantitative trait loci(QTLs)for seedling-vigor using recombinant inbred lines of rice(Oryza sativa L.)[J]. Field Crops Res,91: 161-170
Zhang ZL,Zhai WJ. 2007. Plantphysiology Experimental Guidance[M]. Beijing:Higher Education Press:127-128
Ziegler P. 1999. Cereal β-amylases[J]. J Cereal Sci,29: 195-204 Cheong YH,Kim KN,Pandey GK,et al. 2003. CBL1,a calcium sensor that differentially regulates salt,drought,and cold responses in Arabidopsis[J]. Plant Cell,15(8):1 833-1 845
Deming G,Zizhong G,Jiankang Z. 2002. Expression,activation and biochemical properties of a novel Arabidopsis protein kinase[J]. Plant Physiol,129(1):225-234
Deming G,Changqing Z,Xiuyin C,et al. 2002. Constitutive activation and transgenic evaluation of the function of an Arabidopsis PKS protein kinase[J]. J Biol Chem,227(44):42 088-42 096
Detlef W,Jane G. 2002. Arabidopsis:A Laboratory Manual[M]. New York:Cold Spring Harbor Laboratory Press:168-169
Hardie DG,Carling D,Carlson M. 1998. The AMP-activated/SNF1 protein kinase subfamily:metabolic sensors of the eukaryotic cell[J]. Ann Rev Biochem,67(1):821-855
Hrabak EM,Chan CW,Gribskov M,et al. 2003. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiol,132(2):666-680
Jen S,Li Z,Jang JC. 1999. Sugars as signaling molecules[J]. Curr Opin Plant Biol,2:410-418
Qin YZ(秦玉芝),Li X(李旭),Guo M(郭明),et al. 2008. Regulation of salt and ABA responses by CIPK14,a calcium sensor interacting protein kinase in Arabidopsis(钙传感蛋白互作激酶CIPK14参与拟南芥盐和ABA 胁迫应答调节)[J]. Sci Chin Ser C:Life Sci(中国科学C辑:生命科学),38(5):446-457
Qin YZ(秦玉芝),Guo M(郭明),Li X(李旭),et al. 2010. Stress responsive gene CIPK14 is involved in phytochrome A-mediated far-red light inhibition of greening in Arabidopsis(胁迫相关基因CIPK14在PHYA介导抑制拟南芥远红光黄化苗转绿过程中的作用)[J]. Sci Chin:Life Sci(中国科学:生命科学),40(10):970-977
Uner K,Stefan W,Dragica B,et al. 2004. Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant Physiol,134(1):43-58
Xie C,Zhou X,Deng X,et al. 2010. PKS5,a SNF1-related kinase,interacts with and phosphorylates NPR1,and modulates expression of WRKY38 and WRKY62[J]. J Genet Genom,37(6):359-369
Yan G,Ursula H,Manabu I,et al. 2001. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance[J]. Plant Cell,13(6):1 383-1 399
Yong QY,Yun XQ,Chang XX,et al. 2010. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase[J]. Plant Cell,22(4):1 313-1 332

备注/Memo

备注/Memo:
收稿日期: 2014-06-28 修回日期: 2015-03-25
基金项目: 国家自然科学基金(31440066); 国家青年科学基金(31101598); 安徽省自然科学基金(KJ2013B79); 安徽科技学院省级科研平台开放课题(ZRC2013392)。
作者简介: 程昕昕(1978-),女,山西浮山县人,博士,副教授,主要从事玉米种子等科研工作,(E-mail)chengxin0901@163.com。
更新日期/Last Update: 2015-05-20