|本期目录/Table of Contents|





Genome survey analysis in Siraitia grosvenorii
唐 其23 马小军1* 莫长明3 潘丽梅3 韦荣昌3 赵 欢1
1. 中国医学科学院 药用植物研究所, 北京 100193; 2. 湖南农业大学 园艺园林 学院, 长沙 410128; 3. 广西药用植物园, 南宁 530023
TANG Qi23 MA Xiao-Jun1* MO Chang-Ming3 PAN Li-Mei3 WEI Rong-Chang3 ZHAO Huan1
1. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; 2. Horticultrue and Landscape College, Hunan Agricultural University, Changsha 410128, China; 3. Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
罗汉果 基因组测序 杂合率 GC含量 鸟枪法测序策略
Siraitia grosvenorii(Luohanguo) genome sequencing hybridity percentage GC depth whole-genome shotgun sequencing
罗汉果是广西特有药用及甜料植物,其主要成分之一甜苷V作为天然、非糖甜味剂,具有广阔的开发前景,但罗汉果目前完全来自于栽培,适生区狭窄,连作障碍严重,加之含量低导致甜苷V生产成本居高不下,严重限制了其应用。为了减少盲目性,在大规模全基因组深度测序之前,先做低覆盖度的基因组Survey测序,评价基因组的大小及复杂程度,以确定适合该植物全基因组的测序研究策略。该研究采用第二代高通量测序技术(Illumina HiseqTM 2000)首次测定了罗汉果基因组大小,并利用生物信息学方法估计罗汉果杂合率、重复序列和GC含量等基因组信息。结果表明:(1)获得了18.1 Gb罗汉果基因组测序数据,基因组大小估计为344.95 Mb左右,测序深度为52×;(2)从K-mer分布曲线发现罗汉果基因组有明显的杂合峰,杂合率达1.5%,基因组高杂合导致组装的结果中Contig N50和Scaffold N50的长度比预期的要短很多,还造成GC平均深度及含量分布明显异常,存在一个低深度分布区域。基因组主峰后面有微弱的重复峰,说明罗汉果存在较多的重复序列;(3)由于罗汉果存在高杂合率和重复序列较多的特点,该基因组测序分析仅采用全基因组鸟枪法(WGS)策略不合适,为了更好地对全基因组进行序列拼接和组装,可尝试结合采用Fosmid-to-Fosmid或BAC-to-BAC策略。该研究结果对于揭示罗汉果产量、有效成分含量、发育及抗病虫的分子机制,以及通过分子育种来提高甜苷V含量和降低生产成本具有重要意义,为全基因组测序策略的选择提供了依据。
Siraitia grosvenorii(Luohanguo)is a herbaceous perennial medicinal and sweetener plant native in Guangxi of China. It has long been used in traditional Chinese medicine as a natural sweetener and also as a folk medicine for the treatment of lung congestion, colds and sore throats. Many cucurbitane-type triterpene glycosides have been isolated and characterized from S. grosvenorii. The active components responsible for the sweetness are the mogrosides, which are members of the family of triterpene glycosides. Mogroside V has an important prospect as natural and low calorie sweetener, which is nearly 425 times sweeter than sucrose. S. grosvenorii currently depends totally on cultivation in China. It’s limitedly applied because the narrow distribution, serious continuous cropping obstacle, low content and high extraction costs of mogroside V. In order to reduce blindness research and determine the appropriate sequencing strategy, the genome survey before large-scale genome sequencing is needed. This survey can provide information about the size and complexity of the whole genome of the S. grosvenorii. The next generation sequencing technology which has been emerged as a cost effective approach for high-through-put sequence determination has dramatically improved the efficiency and speed of genes discovery and genome research. Genome sequencing of S. grosvenorii has the vital significance to reveal the molecular mechanism of yield, content, growth, pest and disease resistance, and provides an efficient approach to improve content and reduce cost of mogroside V by molecular breeding. In this study, the genome size of S. grosvenorii was determined by next-generation sequencing technologies(NGS, Illumina HiseqTM 2000). The hybridity percentage, repeats, and GC depth were also estimated by bioinformatics analysis. The results were as follows:(1)Two DNA libraries of 170 bp and 500 bp are constructed. After cleaning and quality checks, more than 18.1 Gb high quality data from the genome is generated, which were assembled into 943 296 contigs and 433 325 scaffolds by SOAP denovo software. The contig and scaffold numbers of the length more than 2 kb were 17 855 and 27 993 separately. The longest length of contig and scaffold were 29 kb and 268 kb. The N50 length of contig and scaffold were 484 bp and 2 331 bp. The average genome size and sequencing coverage depth of S. grosvenorii was about 344.95 Mb and 52 times respectively;(2)The genome of S. grosvernrii had obvious hybridity peak by K-mer method, the hybridity percentage as high as 1.5%. The assembly results showed that the length of contig N50 and scaffold N50 are much shorter than expected. High hybridity percentage of the genome leads to apparently unusual phenomenon between average depth and GC content, and had a low depth distribution area. There was a weak repeat peak behind the main peak, which demonstrated that S.grosvenorii has more repetitive sequences;(3)Whole-genome shotgun sequencing(WGS)should not be used to S. grosvenorii genome sequencing separately, and the Fosmid-to-Fosmid or BAC-to-BAC library could be combinational used for better results. This study would not only obtain the basic resources of genome, but also provide a theoretical basis and target genes for S. grosvenorii in transgenic breeding and genetic engineering.


Deng GT(邓果特),Liu QB(刘清波),Jiang JX(蒋建雄), et al. 2013. Estimation of genome size of Miscanthus floridulus(五节芒基因组大小测定)[J]. J Plant Gen Resour(植物遗传资源学报), 14(2): 339-341
Du B, Wang D. 2006. C-values of seven marine mammal species determinded by flow cytometry[J]. Zool Sci, 23(11): 1 017-1 020
Fu W, Ma XJ, Tang Q,et al. 2012. Karyotype analysis and genetic variation of a mutant in Siraitia grosvenorii[J]. Mol Biol Rep, 39(2): 1 247-1 252
Garcia-Mas J, Benjak A, Sanseverino W,et al. 2012. The genome of melon(Cucumis melo L. )[J]. Proc Nat Acad Sci USA, 109(29):11 872-11 877
Guo SG, Zhang JG, Sun HH,et al. 2013. The draft genome of watermelon(Citrullus lanatus)and resequencing of 20 diverse accessions[J]. Nat Genet, 45(1):51-58
Huang SS, Li RQ, Zhang ZH,et al. 2009. The genome of the cucumber, Cucumis sativus L. [J]. Nat Genet, 41(12):1 275-1 281
Li LB(李潞滨),Wu JY(武静宇),Hu T(胡陶),et al. 2008. Estimation of genome size of Moso bamboo(Phyllostachys edulis)(毛竹基因组大小测定)[J]. Chin Bull Bot(植物学通报), 25(5): 574-578
Li Q(李琦), Ma L(马璐), Huang J(黄婧), et al. 2007. Chromosomal localization of ribosomal DNA Sites and karyotype analysis in three species of Cucurbitaceae(西瓜、苦瓜与罗汉果染色体的rDNA定位及其核型分析)[J]. J Wuhan Univ:Nat Sci Ed(武汉大学学报·理学版),53(4):449-456
Li QS(李秋实),Xu J(徐江),Zhu YJ(朱英杰),et al. 2013. Estimation of the genome size of Ganoderma Lucidum based on a flow cytometric analysis(基于流式细胞技术的灵芝基因组大小估测)[J]. Mycosystema(菌物学报), 32(5): 899-906
Li RQ, Yu C, Li YR,et al. 2009. SOAP2: an improved ultrafast tool for short read alignment[J]. Bioinformatic, 25(15): 1 966-1 967
Liu LH, Ma XJ, Mo CM,et al. 2011. The first genetic linkage map of Luohanguo(Siraitia grosvenorii)based on ISSR and SRAP markers[J]. Genome, 54(1): 19-25
Meng JR(蒙姣荣), Chen BY(陈本勇), Li QQ(黎起秦), et al. 2011. Cloning and sequence analysisof Farnesyl pyrophosphate synthase gene in Siraitia grosvenorii(罗汉果法呢基焦磷酸合成酶基因的克隆及其序列分析)[J]. Chin Trad Herb Drugs(中草药), 42(12): 2 512-2 517
Qi JJ, Liu X, Shen D,et al. 2013. A genomic cariation map provides insights into the genetic basis of cucumber domestication and diversity[J]. Nat genet, 45(12):1 510-1 515
Qi XY(戚向阳),Chen WJ(陈维军),Zhang LQ(张俐勤),et al. 2006. Study on the inhibitory effects of natural sweetner mogrosides on radical and lipid peroxidation(罗汉果皂甙清除自由基及抗脂质过氧化作用的研究)[J]. Sci Agric Sin(中国农业科学),39(2):382-388
Shi JS(施季森),Wang ZJ(王占军),Chen JH(陈金慧). 2012. Progress on whole genome sequencing in woody plants(木本植物全基因测序研究进展)[J]. Hereditas(遗传), 34(2): 145-156
Su XJ(苏小建),Liu GX(刘国雄),Nie X(聂晓), et al. 2006. Study on the content distribution of Mogroside V in each part of Grosvenor momordica(罗汉果甜甙V在各部位的含量分布)[J]. Food Sci & Technol(食品科技),5:76-78
Tang Q, Ma XJ, Mo CM,et al. 2011. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis[J]. BMC Genom, 12:343
Wang YZ(王亚之),Li QS(李秋实),Chen SL(陈士林),et al. 2010. Flow cytometric analysis of nuclear DNA content in Poria cocos(基于流式细胞分析技术的茯苓基因组大小测定)[J]. World Sci Technol/ Mod Trad Chin Med Mat Med( 世界科学技术—中医药现代化), 12(3): 452-456
Wu YF(伍艳芳),Xiao FM(肖复明), Xu HN(徐海宁), et al. 2014. Genome survey in Cinnamomum camphora L. presl(樟树全基因组调查)[J]. J Plant Gen Res(植物遗传资源学报),15(1): 149-152
Xing AJ(邢爱佳), Ma XJ(马小军), Mo CM(莫长明), et al. 2013. Cloning and prokaryotic expression of UDP-glycosyltransferase in Siraitia grosvenorii (罗汉果葡萄糖基转移酶基因的克隆及原核表达)[J]. Acta Hortic Sin(园艺学报), 40(6): 1 195-1 204
Zhang WJ(张伟建), Lin ZL(林治良), Zheng SK(郑伸坤). 1997. The chromosomes of Siraitia grosvenorii(罗汉果染色体组型的研究)[J]. J Trop & Subtrop Bot(热带亚热带植物学报), 5(2):23-25
Wei RC(韦荣昌),Zhao H(赵欢),Ma XJ(马小军),et al. 2014. Extraction of total RNA and cloning of SgDHAR gene from Siraitia grosvenorii(罗汉果果实RNA的提取及SgDHAR基因的克隆与表达)[J]. Acta Pharm Sin(药学学报),49(1):115-123
Xu YH(徐艳红), Yang X(杨欣),Zhang Z(张争), et al. 2013. Cloning and expression analysis of HMG-CoA reductase from Aquilaria sinensis(Lour. )Gilg(白森香3-羟基-3-甲基戊二酰辅酶A还原酶ASHMGR2的克隆及表达分析)[J]. Acta Pharm Sin(药学学报), 48(6): 953-959
Zeng LH(曾黎辉),Wu JS(吴金寿),Ke SS(柯石山),et al. 2005. Establishment of the explant regeneration system for genetic transformantion and transformation by Agrobacterium rhizogene of Siraitia grosvenorii(Swingle)C. Jeffrey(罗汉果遗传转化受体再生体系的建立及发根农杆菌转化初探)[J]. Chin Agric Sci Bull(中国农学通报),21(12):403-406


收稿日期: 2014-05-28修回日期: 2014-07-22
基金项目: 国家自然科学基金(81373914,31400275); 国家科技支撑计划项目(2011BAI01B03); 广西农业科技成果转化项目(桂科转1123013-12); 广西自然科学基金(2013GXNSFBA019170); 湖南省科技计划重点项目(2014SK2005); 广西卫生厅中医药科技专项(GZPT1235)。
作者简介: 唐其(1981-),男,湖南株洲县人,博士,助理研究员,研究方向为药用植物分子生物学,(E-mail)tangqi423@sina.com。 *通讯作者: 马小军,博士,教授,从事药用植物生物技术研究,(E-mail)mayixuan10@163.com。
更新日期/Last Update: 2015-11-20